

Multi-objective model predictive control for smart and energy flexible buildings

Krzysztof Arendt Postdoctoral Researcher October 5, 2017 Climate Neutrality Conference Sønderborg

Center for Energy Informatics SDU

CFEI's mission

The Center's mission is to participate in the green transition of the energy system by focusing on Innovative ICT-based solutions for energy-efficiency improvements in buildings and industrial processes and intelligent integration of the energy flexibility, at the consumer side, with the fluctuating production from renewable energy sources.

Renewable energy challenge

Systems need to talk to one another, e.g. to avoid simultaneous heating and cooling

SDU &

HOLISTIC APPROACH NEEDED!

Standard vs. predictive control

Image source: M. Hoekstra, M Vogelzang, E. Verbitsky, M.W.N. Nijtsen, Health technology assessment review: Computerized glucose regulation in the intensive care unit – how to create artificial control, *Critical Care 2009* (13): 223.

Implementation of smart control solutions in OU44

ENERGY INFORMATICS

Implementation of smart control solutions in OU44

ENERGY INFORMATICS

Building models

ENERGY INFORMATICS

Capabilities:

- Prediction of future indoor conditions
- Possibility to compare the effect of different control strategies beforehand (see figure)

CO2 measured (ventilation OFF) CO2 simulation (ventilation OFF) CO2 simulation (ventilation ON)

Difficulties:

- Limited model portability (numerical model is tailored for a specific building)
- Calibration of model parameters is difficult

Building models

ENERGY INFORMATICS

Capabilities:

- Prediction of future indoor conditions
- Possibility to compare the effect of different control strategies beforehand (see figure)

CO2 measured (ventilation OFF) CO2 simulation (ventilation OFF) CO2 simulation (ventilation ON)

Difficulties:

- Limited model portability (numerical model is tailored for a specific building)
- Calibration of model parameters is difficult

Zone model for indoor environment prediction

INFORMATICS

Inputs:

- Actuator positions
- Setpoints
- Forecast data

Model parameters:

- Geometrical parameters
- Material parameters
- HVAC system capacity
- Typical occupancy behavior

Outputs:

- Indoor temperature
- Indoor CO2

Zone model: implementation

Tool: Dymola / Modelica

Parameter sources

Model paramaters are:

(1) read from blueprints/BIM, (2) calculated from blueprints/BIM, (3) estimated, (4) assumed

Parameter sources

Model paramaters are:

(1) read from blueprints/BIM, (2) calculated from blueprints/BIM, (3) estimated, (4) assumed

Low-order zone thermal models

0

Low-order model results: all cases

Fig: Actual temperature (dotted) vs. low-order model results (green/blue) for all estimated parameters – highlights the need for robust parameter estimation method

ModestPy: model estimation in Python

SDU &

https://github.com/sdu-cfei/modest-py

- ✓ Parameter estimation
- ✓ Optimization
- ✓ Genetic algorithm (global search)
- ✓ Hooke-Jeeves (local search)

- ✓ Open source (BSD)
- ✓ Windows & Linux
- ✓ Non-convex optimization
- ✓ Non-linear models
- ✓ Non-differentiable models
- ✓ FMI-compliant

ModestPy: step 1 – genetic algorithm

Fig: Visual representation of the genetic algorithm evolution

ModestPy: step 2 – Hooke-Jeeves

Fig: Hooke-Jeeves (pattern search) algorithm

Image: https://en.wikipedia.org/wiki/Pattern_search_(optimization)

ModestPy: step 2 – Hooke-Jeeves

Fig: Hooke-Jeeves (pattern search) results

Fig: RMSE in 5 estimation runs on convex problem

Non-convex example: R5C4

Fig: RMSE in 5 estimation runs on non-convex problem

Model accuracy vs. building type

ENERGY INFORMATICS

Fig: RMSE of 5 low order models (on the right) depending on the building type

Calibrated model results: GTH, room 1H1

Figures:

a) Temperature: simulation vs. measured

ENERGY INFORMATICS

- b) CO2: simulation vs. measured
- c) Ventilation, heating, PIR inputs

Estimated parameters:

- 1. average number of occupants
- 2. thermal resistance of external walls
- 3. thermal capacitance of external walls
- 4. thermal capacitance of internal walls
- 5. average interzonal airflow rate
- 6. CO_2 generation per person
- 7. solar heat gain coefficient

Estimation method:

Genetic Algorithm

Calibrated model results: GTH, room 1H1

 $(01-03-2016\ 00:00:00-08-03-2016\ 00:00:00)$

2009 (13): 223.

Calibrated model results: GTH, room 1H1

SDU

ENERGY INFORMATICS

^(01-03-2016 00:00:00 - 08-03-2016 00:00:00)

T/CO₂ vs. camera based occupancy estimation

Fig. 1: a) Temperature, b) CO₂, c) Estimated number of occupants

Fig. 3: T/CO2 based estimation accuracy

SDU 🏠

ENERGY INFORMATICS

Fig. 2: Stereo vision camera view with count lines in green and detected persons shown by circles.

Thank you for attention!

Krzysztof Arendt krza@mmmi.sdu.dk

https://github.com/sdu-cfei/modest-py

APPENDIX

Building energy challenge

Source: Energy performance of LEED-NC buildings, NBI, 2008

SDU MPC framework

OU44 8300 m² 4 floors

SDU MPC Framework

Non-convex example: R5C4

 This is just an example! In many cases gradientdescent outperforms GA+HJ

- Each estimation run in JModelica used different initial guess
 - Ground-truth data emulated on BESTEST 600FF

٠

Fig: Gradient-descent (JModelica) vs. GA+HJ (ModestPy) *

* Results produced in collaboration with LBNL (D. Blum, L. Rivalin, M. Wetter) using MPCPy framework: https://github.com/lbl-srg/MPCPy