The Parker Project: The grid integrated electric vehicle

SmartEnCity Conference, 2017-09-04

What is a grid integrated electric vehicle?

Agenda:

- Who are we
- Part 1, Background and challenges
- Part 2, Examples US and DK
- Part 3, Our projects and the future
- Questions

Center for Electric Power and Energy Department of Electrical Engineering

Development of a reliable, cost efficient and sustainable energy system based on renewable energy

Near 100 staff members incl. 30 PhD-students

Part 1, Background and challenges

The political agenda - CO2 reduction

<u>Paris aftalen</u>

"Recognizing the need for an effective and progressive response to the urgent threat of climate change"

Source: cop21.gouv.fr/

European Commission

EUs energi og klimaaftale

- Cut non-ETS* CO2 emission by 30% by 2030 (from 2005)

*Non-ETS sector: transport, buildings, small industry and waste

- Highest potential in the transport sector*

*1/3 of non-ETS CO2 emissions

A consistent push towards eMobility = a need to prepare for electrification and integration.

Electrification and integration:

Electrification - a question of quantities

The electric vehicle as a new demand for power and energy that may challenge the existing power system.

Grid integration - a question of qualities

Using the new demand in a way that will actively support the future power system.

BESTAND AF ELBILER I DANMARK

Tal over elbilsalget er leveret af De Danske Bilimportører. For evt. spørgsmål eller yderligere data kan DBI kontaktes på 3916 2323

Source: Dansk Elbil Alliance

BESTAND AF ELBILER I DANMARK

Tal over elbilsalget er leveret af De Danske Bilimportører. For evt. spørgsmål eller yderligere data kan DBI kontaktes på 3916 2323

Kilde: Dansk Elbil alliance

Energy impact of 2.300.000 EVs

+ 12,5%*

Energy consumption

* Single EV consumption = 5 kWh/day National consumption = 92 GWh/day

Power impact of 2.300.000 EVs

Peak consumption

* EV simultaneity = 0.30
EV charging 6-7 PM@10 kW
National Peak demand = 6.2 GW

Transpn Res.-D, Vol. 2, No. 3, pp. 157-175, 1997 © 1997 Elsevier Science Ltd All rights reserved. Printed in Great Britain 1361-9209/97 \$17.00 + 0.00

PII: S1361-9209(97)00001-1

ELECTRIC VEHICLES AS A NEW POWER SOURCE FOR ELECTRIC UTILITIES

WILLETT KEMPTON* College of Marine Studies and Center for Energy and Environmental Policy, University of Delaware, Newark, DE 19716, U.S.A.

and

STEVEN E. LETENDRE Department of Economics and Business, Green Mountain College, Poultney, VT 05764, U.S.A.

(Received 26 August 1996; accepted 18 December 1996)

"I was trying to find an inexpensive way to move the solar peak (at solar noon) to the load peak (typically 4 to 8 pm).

Then I went to an EV conference, and realized that there is going to be a **very big battery** in the garage."

Danish 2020 target - 50% of electric energy consumption supplied by wind power

Special qualities:

- 1. Fast response time.
- 2. High-power load
- 3. Possibility of V2G support

Data from Nissan leaf / Enel V2G - 2015-10-27

Special properties:

- 1. Fast response time.
- 2. High-power load
- 3. Possibility of V2G support
- 4. High degree of flexibility

Part 2, Examples

Services

"The act of influencing the **timing, rate and direction** of the power and energy exchanged between the **EV battery and the grid**"

Example services:

- Adaptive charging
- Frequency regulation
- V2X

Services – adaptive charging

Charging is delayed in time based on knowledge in the price of energy or renewable content.

NOTE: Weekends and holidays only include Peak (3-7 p.m.) and Off-Peak (all other hours) periods.

Services - adaptive charging

Charging is delayed in time based on knowledge in the price of energy or renewable content.

Vehicles charge or discharge to balance the grid

3 "waves" of active power reserves:

- 1. Frequency Containment Reserve (FCR, automatic) —
- 2. Frequency Restoration Reserve (FRR, mostly automatic) —

Source: Ole Jan Olesen 12-11-2013

* The terminology used here is a new one gaining traction in Europe. Energinet.dk has not yet adapted this terminology.

- Utility company domestic gas, tap water, district heating and sewage
- Approximately 100.000 Residents
- Part of greater Copenhagen

Partner:

- 10x Nissan eNV200 electric Vans
- 10x ENEL V2G units (bidirectional 10 kW)
- Used mainly for maintenance and service tasks.
- Usage hours = Work day 7 AM 4 PM

Services – V2X

To use the vehicle as a power source where the grid is not available.

Tohoku, Japan, Kilde: CHAdeMO

LED floodlight (70W

Information access

(15W/phone)

Portable PC (50W-150W)

LED electric signs (200W)

Services - V2X

Efficent use of wind power in Denmark Energinet.dk

"Bliver der ikke indbygget denne intelligens i kommunikationen mellem elsystemet og det nye fleksible elforbrug, vil de samsundsøkonomiske gevinster ved at implementere elbil og varmepumper blive reduceret med **ca. 1.7 mia. Kr/år**."

Potential market payment from frequency regulation

811 DKK / Month

(available 16:00-06:00, V2G, 10 kW)

Part 3, Our projects and the future

Nikola project

Service catalog

Definition							Evaluation Danish case, now/near-term(<3 Years)			
Гуре	Groups	Name	Short description	Behavior	Stakeholders & potential benefits	Value for system	Value for owner	Tech./ standard support	Market/ regulatory support	
Power and energy services	System- wide services	Frequency regulation	Keeps the frequency in an interval around 50 Hz	Babicing***	Aggregator®V 0weer: Market earnings TS0: Larger, more competitive market	High	High	Hedium/High	High	
		Frequency regulation - very fast	Frequency regulation with samping times and procision that go beyond what traditional generators can provide	Balancing***	AggregatorEV Owner: Market earnings T50: New/Improved service	High	High	Medium/High	Low	
		Secondary regulation	Replaces frequency regulation and restores the frequency to 50 Hz	Babacing	Aggregator/EV Owner: Market earnings TSO: Larger: more competitive market	Medium	Low	Medium/High	Low	
	(1)	Tertiary regulation	Replaces secondary regulation and fulfills a higher requirement to energy capacity and delivery timescale	Balancing***	Aggregator/EV Owner: Market earnings TSO: Larger, more competitive market	Low	Low	Low	Low	
		Synthetic inertia	Himics rotational inertia by taking advantage of the fast chemical reaction of batteries	Balancing	Aggregator/EV Owner: Market earnings TSO: New/Improved service	Medium/High	Low	Low	Low	
		Adaptive charging	Belays or advances charging in time based on e.g. energy costs or renewable contents	Adaptive*	Aggregator/EV Owner: Energy cost or C02 savings	High	High	Hedium/High	Low	
		HORE - Hother of all regulation	Includes all the abovementioned traditional types of regulation in one - assuming a large flact of EVs.	Balancing*** Energy backup** Adaptive*	Aggregator/EV Owner: Narket earnings TSO: NevoImproved service + Larger, more competitive market	Low	Low	Low	Low	
	Distributio n grid services	Islanded micro grid and black start	Enables one or a set of Elfs to sustain a small power system	Energy backup**	El/owner: Security of supply.	Low	High	Low	Low	
		LV network Italancing	Hitigates unbalances between phases of LV network	Balancing***	Aggregator/EV Owner: Unknown ISO: New service	Medium	Low	Low	Low	
		LV overvoltage management	Hitigates overvoltage of LV feeders	Balancing*** Adaptive*	Aggregator/EV Owner: Unknown USO: New service	High	Medium	Medium	Hedium	
		HV-LV transformer and lines overleading	Hitigates overloading of transformers and cables of LV network	Adaptive*	Aggregator/EV Owner: Unknown DS0: New service	High	Medium	Medium	Low	
		LV congestion due to fast charging stations	Manages EV fast charging to keep within operational limits of LV network	Adaptive*	Aggregator/EV Owner: Unknown DSD: New service	High	Medium	Medium	Low	
ICT Services	User added services	Charging management	Support EV service participation for the EV owner through interface.		Aggragator/EV Owner: Added simplicity for service participation		High	Low		
		Charging flexibility assessment	Estimates whether sufficient changing flexibility exists in order to participate in services.		Aggregator/EV 0wmer: Knowledge on charging file=ib4ky		High	Low		
		Ourging information	Presents the EV user with the information most relevant when controlling (disjcharging of the EV $$		Aggregator/EV 0wner: Improved information service		Low	Medium		
		Wehicle-to-Load	Enables the EV to supply electric energy to the EV user in places where access to the general electric grid is impossible or imposchal		Ef 0wner: New electric energy services		Medium	Medium		
Adaptive Char Debeging 1 Output	ging*		Energy Backup**		Tree-b	ing*** L				

Physical demonstrations

Parker project

Thomas Parker, 1843 - 1915

Explore and demonstrate new EV services using state-of-the-art vehicles and chargers. A Common definition of technical capabilities needed to support services

Understand scalability in terms of system and market impacts and replicability across users and regions.

The grid integrated electric vehicle = An electric vehicle designed to support the power system through services,

- \checkmark Move consumption, balance the grid via V2G or act as a power source.
- ✓ Contribute to a more economic power system and lower EV ownership costs
- ✓ Denmark is in a good position to support this development

Twenty years after Willett defined the grid integrated electric vehicle it is being demonstrated in Frederiksberg.

Questions?

More info:

Peter Bach Andersen pba@elektro.dtu.dk www.evlab.dk www.parker-project.com